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UNDULAR JUMP IN OPEN-CHANNEL FLOW OVER A SILL

UDC 532.59V. I. Bukreev

The paper reports experimental data on a steady flow with a free surface over a rectangular sill at the
bottom of a rectangular channel. The paper focuses on the parameter range in which a qualitative
change in flow pattern accompanied by formation of an undular jump is observed. It is shown that
transition from the bottom state the surface state of head and tail conjugation to occurs when the
second critical depth is reached over the downstream edge of the sill. Conditions of transition from
a free state to a submerged state of flow over the sill are considered; conditions of validity of the
assumption that the first critical depth is reached over the sill are discussed.

The terms “undulations,” “undular bore,” and “undular jump” are used in hydraulics to describe a transition
of the free surface or isopicnical lines or isopicnical lines from one constant value to another that does not occur
monotonically or jumpwise but is characterized by gradually damped oscillations. The processes considered are
essentially nonlinear.

An undular jump or undular bore can be caused by flow out of a sluice gate or flow over a spillway dam [1],
dam break [2, 3], movement of a ship in shallow water [4], landslide of a reservoir shore [5], sudden rise of bottom [6],
fall of a body on water [7], nonstationary movement of a container partly filled with a liquid, such as an inclined ship
elevator [8], etc. Favre’s work [2] arouse interest in these waves, although their particular case — a wavy hydraulic
jump — was already described by Bidone [9] and studied by many researchers [1, 10, 11]. Examples of internal-wave
undular bores in a stratified liquid are given in [12, 13]. These waves are difficult to analyze theoretically because of
their nonlinearity and nonstationarity. In recent studies [14, 15], these waves were calculated rather precisely using
the Navier–Stokes equations but only when the solutions remain smooth. Experimental data obtained earlier are
given in more detail in [16].

Presnt paper reports results of an experimental study of an undular surface jump formed under certain
conditions of steady open flow over a bottom sill of a rectangular channel. Open flows over sills have been extensively
studied; the results obtained are given in [1, 11]. Most studies focused on the determination of the discharge
coefficient. Undular jumps were explored in [11, 16, 17].

A diagram of the experiment is shown in Fig. 1. A sill of length l and height b was placed at a considerable
distance from the entrance of a rectangular channel of width B with zero bottom slope. Previous results show that
the shape of the sill edges, especially that of the upstream edge, has a considerable effect on the flow pattern. In
the present experiments, the sill edges were sharp. For the steady flow over the sill, the volumetric discharge was Q.

The tail-water depth h+ measured far from the sill is an important geometrical parameter of the problem
(Fig. 1). When h+ is varied, a number of critical regimes is observed in which the flow pattern changes abruptly.
In particular, two flow regimes — free and submerged — are distinguished [1]. In the submerged regime, the value
of h+ influences the drag of the sill, while in the free regime, the drag and the flow pattern upstream of the sill do
not depend on h+. At a certain h+ and fixed values of the remaining parameters, there is a sharp transition from
the bottom state of head and tail conjugation behind the sill to the surface state. The undular jump considered
exists only in a limited range of values of h+. This range can be further divided into the regions of existence of
smooth waves and breaking waves. Obtaining new experimental data on the critical regimes is one of the goals of
the present work.
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Fig. 1. Diagram of experiment and notation.

The free surface profile z∗(x) was measured with a point gauge and was photo- and video recorded. Particular
attention was paid to determining the characteristic values of the functions: h1 = z∗(0) − b, hmin = z∗(xmin) − b,
and h2 = z∗(l)− b (Fig. 1). The variance coefficient of the measurement errors for these values did not exceed 2%.
Other values of z∗ were measured with the same error if the free surface remained smooth. When waves broke
and accidental fluctuations z∗ occurred, time averaging was performed, and the measurement error reached 5%.
We used photo- and video recording to obtain quantitative data on the internal structure of the flow by analyzing
trajectories of aluminum particles with sizes smaller than 10 µm introduced into the flow.

Since we further consider the flow kinematics only, in conversion to dimensionless quantities, it is sufficient
to choose any two of the specified parameters that contain independently the dimensions of time and length. To
this end in hydraulics, it is customary to use the acceleration of gravity g and the head on the sill crest H (Fig. 1),
for example, in solving the problem of the discharge capacity of a sill as a spillway, where the discharge Q is an
unknown function. This function is expressed in terms of H using the discharge coefficient m, which is determined
by the formula [1]

Q = mB
√

2g H3/2. (1)

According to the goals of the present paper, we choose g and Q as scale variables, and H is one of the unknown
functions. This choice was proved by obtaining more universal dependences and more distinct manifestations of
certain mechanisms. In this case, the characteristic scales of length and velocity are the critical depth h∗ and the
critical velocity V∗, which are determined by the formulas [1]

h∗ = (q2/g)1/3, V∗ = (gh∗)1/2, (2)

where q = Q/B is the discharge intensity. From (1) and (2), we have the following relationship between h∗ and H:
1√
2

(h∗
H

)3/2
= m.

Figure 2 shows typical free surface profiles. We normalized the longitudinal coordinate using the length
of the sill, so that the upstream edge of the sill corresponds to x/l = 0 and the downstream edge corresponds
to x/l = 1. The curves in Fig. 2 differ only in the value of the tail-water depth h+. To analyze the effect of h+

on the discharge coefficient and the flow upstream of the sill, we used the parameter δ = (h+ − b)/h∗, called the
“downstream submergence ratio” [1]. Let us determine the critical value of this parameter δ∗ below which the value
of h+ does not affect the flow pattern upstream of the sill and, particularly, the discharge coefficient. In Fig. 2,
curves 1 and 2 presented for δ > δ∗ and curves 3–5 for δ < δ∗.

For δ � δ∗ (curve 1 in Fig. 2), waves are generated by both the upstream and downstream edges of the sill;
the amplitude and the length of the waves generated by the upstream edge are considerably larger. As values of
δ approach δ∗, the influence of waves from the downstream edge and nonlinear effects increases (compare curves
1 and 2 in Fig. 2). Curves 3 and 4 are of considerable interest because hmin/h∗ < 1 and δ > 1. Thus, the
flow is supercritical in a certain section over the sill, and it is subcritical behind the sill. According to the first
approximation of the shallow water theory, the transition from supercritical flow to subcritical flow should occur
jumpwise (classical hydraulic jump with a roller in its leading part). However, in our case, this transition involved
a smooth undular jump.

With further decrease in δ, the undular jump retained smoothness up to a certain value of δ∗∗ < δ∗.
For δ ' δ∗∗, its leading edge broke, and for smaller δ, a classical hydraulic jump with a roller on the crest was
formed (see curve 5 in Fig. 2). In our experiments, we obtained δ∗ ' 1.33 and δ∗∗ ' 1.10.
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Fig. 2. Examples of wave (curves 1–5) generated by a sill (h∗ = 5.55 cm, l/h∗ = 5.41, and b/h∗ = 0.87):
1) h+/h∗ = 2.46, hmin/h∗ = 1.43, and H/h∗ = 2.59; 2) h+/h∗ = 2.25, hmin/h∗ = 1.04, and H/h∗ = 2.45;
3) h+/h∗ = 2.11, hmin/h∗ = 0.95, and H/h∗ = 2.40; 4) h+/h∗ = 2.00, hmin/h∗ = 0.82, and H/h∗ = 2.40;
5) h+/h∗ = 1.91, hmin/h∗ = 0.80, and H/h∗ = 2.40.

When the parameters of the problem were varied, we observed different wave patterns. For example, during
transition from an undular jump to a classical hydraulic jump, we observed an unstable regime in which chaotic in
time and space perturbations of the free surface behind the roller. These perturbations can be regarded as analogs
of the so-called turbulent spots that appear during a laminar–turbulent transition in a boundary layer.

Changes in the wave pattern are due to changes in the internal structure of the flow. Figure 3 shows
photographs taken in a narrow vicinity of δ = 1. In the photographs, one can see two vertical white reference lines,
which are 10 cm apart in the channel. The value of δ = 1 also proved to be critical because the transition from a
surface to bottom state of head and tail conjugation behind the sill occurred at this downstream submergence ratio.
In the surface state (Fig. 3a), the liquid flows mainly in the surface jet. In this case, a region of flow separation
with thickness comparable to the height of the sill is formed near the bottom of the channel. The length of this
region can extend up to a few tens of h+. In this region, different vortex patterns are formed, which are called
coherent structures in terms of the theory of turbulence. The average value of the longitudinal velocity component
in this region is relatively small, and particles (for example, of the aluminum powder) that enter this region are
rarely brought into the jet.

In the case of the bottom state of conjugation (Fig. 3b), the jet moves toward the bottom and a pair of
strong vortices are formed: a roller of a classical hydraulic jump near the free surface and a bottom roller behind
the sill. Each of them contains an internal hierarchy of vortices in descending order of size. Observation data taken
within a few hours showed that the impurity that entered the bottom roller almost did not flow out of it.

The internal flow structure for transition from a surface state to a bottom state is shown in Fig. 3c.
In the transitional state, the flow depth over the downstream edge of the sill h2 is of considerable interest.

If the critical value of h2 at which the flow pattern changes is denoted by h∗∗ and the corresponding velocity by
V∗∗, then from experiments, we have h∗∗ = 0.79h∗ and V∗∗ = 1.27V∗. In studies [18, 19] of waves of the undular
bore type differently generated, the notion of the second critical propagation speed c∗∗ was introduces in addition
to the well-known (first) critical propagation speed c∗ =

√
gh, where h is the unperturbed liquid depth before a

free undular bore. The notion of the second critical propagation speed was introduced because the transition of
smooth waves to breaking waves occurs exactly in the neighborhood of c∗∗ and not in the neighborhood of c∗, as
assumed earlier. The value of c∗∗ turned out to be equal to the theoretical limiting propagation speed of solitary
waves c∗∗ ' 1.3c∗, which was numerically calculated based on the complete model of potential flow [20].
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Fig. 3. Internal structure of the flow in surface (a), bottom (b), and transitional (c) states of head and tail conjugation
behind the sill (h∗ = 5.55 cm, H/h∗ = 2.41, l/h∗ = 5.41, and b/h∗ = 0.87) for δ = 1.14 (a), 0.81 (b), and 1.00 (c).

In hydraulics, an analog of c∗ is V∗. Since in the relations between V∗∗ and V∗ and between c∗∗ and c∗, the
numerical coefficients do not differ greatly from one another, we can expect the second critical velocity V∗∗ to be
an analog of c∗∗ in hydraulic problems. Experimental results obtained showed that there is a range of parameters
for the problem considered in which the transition of a surface state of head and tail conjugation to a bottom state
occurs when the (cross-section average) velocity of the flow over the downstream edge of the sill reaches the value
of the second critical velocity V∗∗ ≈ 1.3V∗ and the second critical depth h∗∗ = q/V∗∗ establishes.

Applied problems of flow over a sill might be arranged in two groups according to the target aims. The first
group of problems seeks to determine the discharge capacity of a sill as a spillway, i.e., the relationship between
H and Q. In the second group, one finds the level difference before and after a spillway, i.e., the relationship
between H+ b and h+. Results of studying problems of the first group are presented in detail in [1, 11] as empirical
formulas. For problems of the second group, insufficient information is available and one has to use additional
assumptions, whose field of application is still unknown, such as, for example, the assumption that the first critical
depth establishes over a wide sill [1]. Figures 4 and 5 show results of this work for problems of the second group.
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Fig. 4. Head on the sill crest versus discharge and downstream submergence ratio: 1) h∗ = 2.61 cm,
l/h∗ = 11.50, and b/h∗ = 1.86; 2) h∗ = 3.09 cm, l/h∗ = 9.71, and b/h∗ = 1.57; 3) h∗ = 4.47 cm,
l/h∗ = 6.71, and b/h∗ = 1.09; 4) h∗ = 5.55 cm, l/h∗ = 5.41, and b/h∗ = 0.87; 5) h∗ = 7.24 cm,
l/h∗ = 4.14, and b/h∗ = 0.67; 6) H/h∗ = δ.

Fig. 5. Minimum depth over the sill and the distance from the depth to the upstream edge of the sill
(notation the same as in Fig. 4).

Figure 4 shows curves of H/h∗ versus δ. From physical considerations, it follows that H/h∗ → δ as δ →∞.
The corresponding asymptote (line 6 in Fig. 4) is the same for different combinations of parameters of the problem.
In the studied range of parameters at δ > 3, the deviations from the asymptote did not exceed 2%; with increase
in Q, the asymptote was reached faster.

At δ = δ∗ ≈ 1.33, we observed an abrupt transition to the asymptotes H/h∗ = const, which was associated
with transition from submerged flow conditions to free conditions. Values of the constants for these asymptotes
depend on the remaining parameters of the problem (see Fig. 4). However, in the studied range of parameters,
transition of submerged conditions to free conditions and vice versa occurred for the same value of δ ≈ 1.33. This
confirms the advantage of choosing h∗ as a characteristic length scale.

The data shown in Fig. 5 suggest that there is a range of parameters in which the use of h∗ as a characteristic
length scale allows us to obtain a universal dependence of the minimum depth over the sill on the downstream
submergence ratio. If we use H as a characteristic scale, no universal dependence is obtained. At δ < 1.2, the
function hmin/h∗ takes a constant asymptotic value that is universal with respect to the parameters of the problem
and equal to 0.9.
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TABLE 1
Dependence of z∗ − b on x

Example 1 Example 2 Example 3 Example 4 Example 5

(h+ = 13.7 cm) (h+ = 12.5 cm) (h+ = 11.7 cm) (h+ = 11.1 cm) (h+ = 10.6 cm)

x, cm z∗ − b, cm x, cm z∗ − b, cm x, cm z∗ − b, cm x, cm z∗ − b, cm x, cm z∗ − b, cm

−20 14.45 −20 13.65 −20 13.45 −20 13.45 −20 13.45

−12 14.35 −12 13.60 −12 13.35 −12 13.40 −12 13.40

−6 14.25 −6 13.50 −6 13.20 −6 13.25 −6 13.20

0 13.90 0 13.05 0 12.80 0 12.85 0 12.80

6 13.05 6 12.00 6 11.60 6 11.65 6 11.55

11 12.75 12 10.80 12 10.35 12 10.35 12 10.35

15 13.25 15 10.60 18 10.50 18 9.80 15 10.05

20 13.80 22 11.60 25 10.25 24 9.65 19 9.85

24 13.30 27 12.60 30 10.65 28 9.60 24 9.65

28 12.10 30 11.90 37 11.25 30 9.55 30 9.35

30 13.00 37 11.30 44 10.80 40 8.85 34 8.90

37 13.60 43 11.85 50 10.40 45 8.50 38 8.15

42 13.30 48 12.10 56 11.00 50 8.90 42 7.40

46 13.00 54 11.85 61 11.90 53 10.20 45 7.20

50 13.45 60 12.20 66 11.40 57 10.85 49 8.80

54 13.65 64 12.60 71 11.10 62 10.30 51 9.50

60 13.25 70 12.00 76 12.00 66 10.00 53 10.00

66 13.65 77 12.65 79 12.20 70 10.35 55 10.50

71 13.45 81 12.10 82 11.70 77 11.00 60 10.60

75 13.50 86 12.80 86 11.45 84 10.70 65 10.60

79 13.75 92 12.20 92 12.05 88 10.90 70 10.60

84 13.59 100 12.70 97 11.75 93 11.10 80 10.60

88 13.75 110 12.45 100 11.70 100 10.75 90 10.65

95 13.70 120 12.60 110 11.70 110 11.15 100 10.65

110 13.70 130 12.55 120 11.70 115 11.00 110 10.60

120 13.70 140 12.50 140 11.75 120 11.10 120 10.60

Note. The number of an example corresponds to the number of a curve in Fig. 2.

For the function xmin(δ), universality was not revealed for any characteristic length scales. For normalization
to h∗ in comparison with normalization to H, curves xmin/h∗ (for different values of discharge) intersect at about
the same point with coordinates δ ≈ 1.35 and xmin/h∗ ≈ 2.4. In the low submergence zone, the function studied
also takes constant asymptotic values that depend on discharge.

Thus, our experimental results show that the assumption that the first critical depth h∗ establishes over the
sill has a limited range of applicability. This assumption is valid only for free flow conditions, i.e., δ < 1.33. The
existence of undular jumps requires an even more severe restriction (see Fig. 2). If we require additionally that
the coordinate x/l over the sill at which the first critical depth is reached do not depend on the parameters of the
problem, the data obtained show that this assumption is valid only at δ < 1.2.

Table 1 shows values of z∗ − b versus x to facilitate testing mathematical models.
The author thanks A. V. Gusev and T. V. Krasnoshchekova for their contribution to the derivation of the

experimental data.
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